Transonic Solutions for the Mach Reflection of Weak Shocks

نویسندگان

  • J. K. Hunter
  • A. M. Tesdall
چکیده

We present numerical solutions of the steady and unsteady transonic small disturbance equations that describe the Mach reflection of weak shock waves. The solutions contain a complex structure consisting of a sequence of triple points and tiny supersonic patches directly behind the leading triple point, formed by the reflection of weak shocks and expansion waves between the sonic line and the Mach shock. The presence of an expansion fan at each triple point resolves the von Neumann paradox. The numerical results and theoretical considerations suggest that there may be an infinite sequence of triple points in an inviscid weak shock Mach reflection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mach Reflection of Weak Shocks

We present numerical solutions of weak shock Mach reflections that contain a remarkably complex sequence of supersonic patches, triple points, and expansion fans immediately behind the leading triple point. This structure resolves the von Neumann triple point paradox of weak shock Mach reflection. During the second world war, von Neumann carried out an extensive study of shock reflection [5]. H...

متن کامل

Self-Similar Solutions for Weak Shock Reflection

We present numerical solutions of a two-dimensional Riemann problem for the unsteady transonic small disturbance equations that provides an asymptotic description of the Mach reflection of weak shock waves. We develop a new numerical scheme to solve the equations in selfsimilar coordinates and use local grid refinement to resolve the solution in the reflection region. The solutions contain a re...

متن کامل

On the Self-similar Diffraction of a Weak Shock into an Expansion Wavefront

We study an asymptotic problem that describes the diffraction of a weak, self-similar shock near a point where its shock strength approaches zero and the shock turns continuously into an expansion wavefront. An example arises in the reflection of a weak shock off a semi-infinite screen. The asymptotic problem consists of the unsteady transonic small disturbance equation with suitable matching c...

متن کامل

A Free Boundary Problem for a Quasi-linear Degenerate Elliptic Equation: Regular Reflection of Weak Shocks

We prove the existence of a solution to the weak regular reflection problem for the unsteady transonic small disturbance (UTSD) model for shock reflection by a wedge. In weak regular reflection, the state immediately behind the reflected shock is supersonic and constant. The flow becomes subsonic further downstream; the equation in self-similar coordinates is degenerate at the sonic line. The r...

متن کامل

The von Neumann Triple Point Paradox

We describe the problem of weak shock reflection off a wedge and discuss the triple point paradox that arises. When the shock is sufficiently weak and the wedge is thin, Mach reflection appears to be observed but is impossible according to what von Neumann originally showed in 1943. We summarize some recent numerical results for weak shock reflection problems for the unsteady transonic small di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003